- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Simonetti, John H. (3)
-
Kavic, Michael (2)
-
Kavic, Michael J. (2)
-
Liebling, Steven L. (2)
-
Lippert, Matthew (2)
-
Minic, Djordje (2)
-
Dai, De-Chang (1)
-
Estes, John (1)
-
Jejjala, Vishnu (1)
-
Stojkovic, Dejan (1)
-
Takeuchi, Tatsu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The collision of a primordial black hole with a neutron star results in the black hole eventually consuming the entire neutron star. However, if the black hole is magnetically charged, and therefore stable against decay by Hawking radiation, the consequences can be quite different. Upon colliding with a neutron star, a magnetic black hole very rapidly comes to a stop. For large enough magnetic charge, we show that this collision can be detected as a sudden change in the rotation period of the neutron star, a glitch or anti-glitch.We argue that the magnetic primordial black hole, which then settles to the core of the neutron star, does not necessarily devour the entire neutron star; the system can instead reach a long-lived, quasi-stable equilibrium. Because the black hole is microscopic compared to the neutron star, most stellar properties remain unchanged compared to before the collision. However, the neutron star will heat up and its surface magnetic field could potentially change, both effects potentially observable.more » « less
-
Jejjala, Vishnu; Kavic, Michael J.; Minic, Djordje; Takeuchi, Tatsu (, International Journal of Modern Physics A)In the Lambda-CDM model, dark energy is viewed as a constant vacuum energy density, the cosmological constant in the Einstein–Hilbert action. This assumption can be relaxed in various models that introduce a dynamical dark energy. In this paper, we argue that the mixing between infrared (IR) and ultraviolet (UV) degrees of freedom in quantum gravity leads to infinite statistics, the unique statistics consistent with Lorentz invariance in the presence of nonlocality, and yields a fine structure for dark energy. Introducing IR and UV cutoffs into the quantum gravity action, we deduce the form of Lambda as a function of redshift and translate this to the behavior of the Hubble parameter.more » « less
-
Simonetti, John H.; Kavic, Michael J.; Minic, Djordje; Stojkovic, Dejan; Dai, De-Chang (, Physical Review D)
-
Kavic, Michael; Liebling, Steven L.; Lippert, Matthew; Simonetti, John H. (, Journal of Cosmology and Astroparticle Physics)
An official website of the United States government
